
Copyright (C) 2014 Network RADIUS SARL 110 of 158

THE FREERADIUS IMPLEMENTATION GUIDE CHAPTER 16 - UNLANG POLICY LANGUAGE
THE PROCESS

Chapter 16 - Unlang Policy Language
This chapter describes the Unlang policy language supported by FreeRADIUS servers. It discusses:

• Overview

• Data types

• Configuration file format

• Module statements

• String expansion

• Programming statements

• Conditions/conditional expressions

• Attribute editing statements

• Configurable failover

This chapter describes the syntax of the language, followed by examples.

16.0 Overview
The server supports a simple processing language called “Unlang”, which is short for “unlanguage”. The
original intention of using an “unlanguage” was to avoid creating yet another programming language.

Unlang allows simple conditional checks and editing of attributes and attribute lists. Where more
complicated functionality is required, Perl or Python modules rlm_perl or rlm_python are recommended.

The goal of Unlang is to allow simple policies to be written with minimal effort. Conditional checks can be
performed by the policies, which can then update the request or response attributes based on the results
of those checks. Unlang can only be used in a processing section (e.g., authorize, authenticate, post-auth,
preacct, accounting, pre-proxy, post-proxy, and session); it cannot be used anywhere else, including in
configuration sections for a client or a module. The reason for this limitation is that the language is
intended to perform specific actions on requests and responses. The client and module sections contain
definitions for a client or module; they do not define how a request is processed.

The Unlang syntax is based on reserved words, which dictate how the text that follows should be
interpreted. The syntax for each word is line oriented. Subsections are sometimes allowed, just like with
other portions of radiusd.conf. Where the lines are too long, the backslash character can be used to link
multiple lines together.

Note that unlike most programming languages, whitespace is important in Unlang. For example, the
following two statements are not identical. Although the only difference between the two statements is
the placement of the first hard return, the first will parse correctly, and the second will return a parse error:

if (foo) {
...

}

versus:

if (foo)
{

...
}

Copyright (C) 2014 Network RADIUS SARL 111 of 158

THE FREERADIUS IMPLEMENTATION GUIDE CHAPTER 16 - UNLANG POLICY LANGUAGE
THE PROCESS

16.1 Data Types
Unlang supports a number of data types. These data types can be used in conditional expressions or when
assigning a value to an attribute.

16.1.1 Numbers

Examples:

0
563

Numbers are unsigned integers that are composed of decimal digits. Signed numbers, floating point, hex,
and octal numbers are not supported in Unlang.

These limitations are largely a result of the limitations of the underlying protocol. There is no way to
transport signed numbers or floating point numbers in RADIUS, so there is no need to perform signed or
floating point calculations.

The maximum value for a number is machine-dependent but is at least 32 bits or 4,294,967,296. In some
cases, it may be necessary to perform calculations on numbers larger than 32 bits, as when calculating
total data traffic to or from a user. In those cases, the calculations should either be one carefully to avoid
32-bit overflow or be done using real programming language.

16.1.2 Simple Words

Examples:

Hello
User-Name

Where a series of characters cannot be parsed as a decimal number, they are interpreted as a simple string
composed of one word. These words are interpreted as static strings and are usually equivalent to placing
the string in single quotes. When they are used in the left-hand side of a conditional expression they can
be interpreted as a reference to an attribute.

This syntax is allowed for simplicity, as there are many cases where simple text can be used, and it would
be awkward to require the simple text to be quoted.

16.1.3 IP Addresses

Examples:

192.0.2.16
::1
example.com

Depending on the context, a “simple word”, as above, may be interpreted as an IPv4 or an IPv6 address.
This interpretation is usually done when the string is used in the context of an attribute, or to compare
two addresses or assign an address to an attribute.

16.1.4 Single Quoted Strings

’string’

Copyright (C) 2014 Network RADIUS SARL 112 of 158

THE FREERADIUS IMPLEMENTATION GUIDE CHAPTER 16 - UNLANG POLICY LANGUAGE
THE PROCESS

A single quoted string is interpreted without any dynamic string expansion. The quotes allow the string
to contain spaces, which are not allowed in the word form described in the previous section. The single
quote character can be placed in such a string by escaping it with a backslash.

Examples:

’hello’
’foo bar’
’foo\’bar’
’this is a long string’

16.1.5 Double-Quoted Strings

"string"

A double-quoted string is interpreted via the usual rules in programming languages for double quoted
strings. The double-quote character can be placed in a string by escaping it with a backslash. Carriage
returns and line-feeds can also be used via the usual \r and \n syntax.

The main difference between the single and double quoted strings is that the double quoted strings can
be dynamically expanded. The syntax ${...} is used for parse-time expansion and %{...} is used for
run-time expansion. The difference between the two methods is that the ${...} form is expanded
when the server loads the configuration files and is valid anywhere in the configuration files. The %{...}
form is valid only in conditional expressions and attribute assignments and is otherwise used verbatim.

The output of the dynamic expansion can be interpreted as a string, a number, or an IP address,
depending on its context. In general, it is safest to assume that the result will be interpreted as a string.

Note that the language is not strongly typed, so the text "0000" can be interpreted as a data type
“integer”, having value zero, or a data type “string”, having value "0000".

Examples:

"word"
"a string"
"this has embedded\ncharacters"

16.1.6 The Backtick Operator

‘string‘

The backtick operator is used to perform a run-time expansion similar to what is done with the Unix shell.
The contents of the string are split into one or more sub-strings, based on intermediate whitespace. Each
substring is then expanded as described above for double quoted strings. The resulting set of strings is
used to execute a program with the associated arguments.

The output of the program is recorded, and the resulting data is used in place of the input string value.
Where the output is composed of multiple lines, any carriage returns and line feeds are replaced by
spaces.

For safety reasons, the full path to the executed program should be given. In addition, the string is split
into arguments prior to dynamic expansion in order to prevent the expanded strings from being
erroneously interpreted as more command-line arguments.

For performance reasons, we recommend that the use of back-quoted strings be kept to a minimum.
Executing external programs is relatively expensive, and executing a large number of programs for every

Copyright (C) 2014 Network RADIUS SARL 113 of 158

THE FREERADIUS IMPLEMENTATION GUIDE CHAPTER 16 - UNLANG POLICY LANGUAGE
THE PROCESS

request can quickly use all of the CPU time in a server. If many programs need to be executed, it is
suggested that alternative ways to achieve the same result be found. In some cases, using a real language
may be sufficient.

This operator is permitted only in conditional expressions and when assigning values to an attribute. In
versions 2.1.11 and later, using it in an invalid context will return a syntax error, and the server will refuse
to start. In versions of the server prior to 2.1.11, the data was treated as a single quoted string, and no run-
time expansion or program execution is performed.

Examples:

‘/bin/echo hello‘

16.1.7 Character Escaping

The quotation characters in the above string data types can be escaped by using the backslash, or \,
character. The backslash character itself can be created by using \\. Carriage returns and line feeds can
be created by using \n and \r.

Examples:

"I say \"hello\" to you"
"This is split\nacross two lines"

16.2 Configuration File Format
The Unlang syntax is a superset of the syntax of the main configuration files, which was discussed earlier.

16.2.1 Syntax

Long lines can be split:

foo = \
bar

Comments are ignored:

this is a comment

Comments can be placed at the tail end of any valid line:

foo = bar # assign “bar” to variable “foo”

16.2.2 Variable Assignment

variable = value

Assigns value to variable. The value can be any one of the data types defined in the previous section.
The name of the variable is context-specific and is built into the server at compile time.

The default configuration files contain examples of the known variables along with the context in which
they are valid. The meaning of each variable is defined in the comments that are located nearby. In many
cases, those comments are the only documentation that exists for the variables.

Copyright (C) 2014 Network RADIUS SARL 114 of 158

THE FREERADIUS IMPLEMENTATION GUIDE CHAPTER 16 - UNLANG POLICY LANGUAGE
THE PROCESS

Examples:

prefix = "/usr/share/local"
max_request_time = 30
reject_delay = 1

16.2.3 Variable References

variable = "${reference}"

A variable reference causes the configuration file parser to expand the string when the configuration file
is being parsed. Further expansion may be done at run time if the string also contains the dynamic
expansion string %{...}.

The data inside the ${...} string must be a variable that exists in the configuration files. If the variable
does not exist, a parse error is returned and the server will not start.

The reference can be any one of the following; the meanings are given below each example:

• reference
A reference to a named variable in the current section. If the variable does not exist, then the
variable is looked for in the main (i.e., global) configuration.

• .reference
A reference to a named variable in the current section. The global configuration is not used.

• ..reference
A reference to the named variable found in the parent section instead of the current section. Any
number of dots (.) can be used, up to the global configuration.

• reference1.reference2.reference3
A reference to the section named reference1, which contains a subsection named
reference2, which in turn contains a variable reference3. These references may be nested to
any depth.

• reference1[name].reference2
A reference to a section named reference1, which has an instance called name, which in turn
contains a variable reference2.

The above capabilities allow any portion of the configuration files to reference values taken from any
other portion.

One additional expansion is supported.

• $ENV{variable}
A reference to the environment variable named variable.

Examples:

foo = bar
baz = "${foo}" # assigns "bar" to "baz"
var = "a ${baz} string" # assigns "a bar string" to "var"
name = "${client[localhost].secret}"
ipaddr = $ENV{HOSTNAME}

16.2.4 Including Files

$INCLUDE path

Copyright (C) 2014 Network RADIUS SARL 115 of 158

THE FREERADIUS IMPLEMENTATION GUIDE CHAPTER 16 - UNLANG POLICY LANGUAGE
THE PROCESS

The $INCLUDE directive “includes” a file into the current location of the configuration files, with the
contents of the file replacing the $INCLUDE directive. The path has one or more forms, with the following
meanings:

• filename
Include a new filename relative to the current file being parsed.

• /path/to/filename
Include filename using the given absolute path.

• directory/
Include all of the files in the given directory. Any “hidden” files (i.e., with a leading dot (.) in their
name) are ignored. All other files are read, including common editor “backup” files, such as ones with
a trailing ~ in their name.
For that reason, this directive should be used with care.

The only limitation of $INCLUDE files is that a section cannot be split across multiple files.

Examples:

$INCLUDE clients.conf
$INCLUDE sites-enabled/
$INCLUDE ${raddbdir}/foo/bar/baz

16.2.5 Sections

section {
[statements]

}

A section is a way to group multiple statements together. Sections can be nested to any depth and may
contain any valid statement. Empty sections are allowed but serve no purpose.

Names of sections and variables are scoped within the context of their parent section. It is a syntax error
to have a section and variable with the same name in the same scope. The server looks for and parses
sections with “known” names. These known sections have pre-defined meanings, which cannot be
changed.

Examples:

foo {
 bar = baz
}

16.2.6 Instance Names

section-type instance-name {
 [statements]
}

An instance-name is a way to define a specific instance for a particular type of section. For example, the
client section is used to define information about a client. When multiple clients are defined, they are
distinguished by their instance-name.

Copyright (C) 2014 Network RADIUS SARL 116 of 158

THE FREERADIUS IMPLEMENTATION GUIDE CHAPTER 16 - UNLANG POLICY LANGUAGE
THE PROCESS

The same instance-name applies to modules. The sql module defines interation with an SQL
database. Individual instances of the sql module can define interactions with different databases.

Examples:

client localhost {
ipaddr = 127.0.0.1
...

}
sql backup {

...
}

16.3 Module Statements
The Unlang syntax allows for policies to directly refer to modules and for modules to be placed in fail-over
groups.

16.3.1 The module-name Statement

module-name

The module-name statement is a reference to the named module. Common module names include pap,
chap, files, eap, and sql. The valid module names are determined by the modules that are defined
in the modules subsection of radiusd.conf.

When processing reaches this point, the pre-compiled module is called. The module may succeed or fail
and will return a status code to the Unlang interpreter detailing success or failure.

Examples:

chap
sql

Module Return Codes

When a module is called, it returns one of the following codes to the interpreter; the meaning of each
code is detailed to the right of the code, below:.

Module Return Codes

Name Meaning

reject the module rejected the request

fail the module failed

ok the module succeeded

handled the module has handled the request itself

Copyright (C) 2014 Network RADIUS SARL 117 of 158

THE FREERADIUS IMPLEMENTATION GUIDE CHAPTER 16 - UNLANG POLICY LANGUAGE
THE PROCESS

Table 16.3.1 Module Return Codes

These return codes can be used in a subsequent conditional expression (see the processing section for a
more detailed description), thus allowing policies to perform different actions based on the behavior of
the modules.

Return Codes as Modules

Some of the module return codes given above can be used in place of a module-name. This capability
is implemented in the default configuration by the always module and exists so that a success or failure
can be forced during the processing of a policy. The names and meanings are given below:

• fail Causes the request to be treated as if a database failure had occurred.

• noop Do nothing. This also serves as an instruction to the configurable failover tracking that
nothing was done in the current section.

• ok Instructs the server that the request was processed properly. This keyword can be used to over-
ride earlier failures, if the local administrator determines that the failures are not catastrophic.

• reject Causes the request to be immediately rejected.

16.3.2 The module-name.section Statement

module-name.section

This variant of module-name is used in one processing section to cause the module to be called with the
method of another processing section. It most often used to call a module’s authorize method while
processing the post-auth section.

The module-name portion must refer to an existing module. The section portion must refer to a
processing section.

Examples:

sql.authorize
files.authorize

16.3.3 The redundant Statement

redundant {
[module-1]

invalid the configuration was invalid

userlock the user was locked out

notfound information was not found

noop the module did nothing

updated the module updated the request

Module Return Codes

Name Meaning

Copyright (C) 2014 Network RADIUS SARL 118 of 158

THE FREERADIUS IMPLEMENTATION GUIDE CHAPTER 16 - UNLANG POLICY LANGUAGE
THE PROCESS

[module-2]
}

The redundant section is used in place of a single module name and is used to configure inter-module
fail-over. When the redundant statement is reached, the first module in the section is called. If that
module succeeds, then the server returns from the redundant section and continues processing the
rest of the policy.

However, if that module fails, then the next module in the list is called and checked for failure as described
above. The processing continues until either a module succeeds or the end of the list has been reached.

There is no limit to the number of modules that can be listed inside of a redundant section.

Examples:

redundant {
sql1
sql2
ok

}

16.3.4 The load-balance Statement

load-balance {
[module-1]
[module-2]

}

The load-balance section is similar to the redundant section except that only one module in the
subsection is ever called. The module is chosen randomly, in a “load balanced” manner.

In general, the redundant-load-balance statement (see next section) is more useful than this one.

Examples:

load-balance {
sql1
sql2

}

16.3.5 The redundant-load-balance Statement

redundant-load-balance {
[module-1]
[module-2]

}

The redundant-load-balance section operates as a combination of the redundant and load-
balance sections. When the section is entered, one module is chosen at random to process the request.
If that module succeeds, then the server stops processing the section. If, however, the module fails, then
one of the remaining modules is chosen at random to process the request. This process repeats until one
module succeeds or until the list has been exhausted.

All of the modules in the list should be the same type (e.g., ldap or sql). All of the modules in the list
should behave identically, otherwise different requests will be processed through different modules and
will give different results.

Copyright (C) 2014 Network RADIUS SARL 119 of 158

THE FREERADIUS IMPLEMENTATION GUIDE CHAPTER 16 - UNLANG POLICY LANGUAGE
THE PROCESS

Examples:

redundant-load-balance {
sql1
sql2
sql3

}

16.3.6 The group Statement

group {
[statement]
[statement]

}

The group statement collects a series of statements into a list. The default processing sections of the
server (authorize, accounting, etc.) are each based on a group statement.

The difference between a redundant and group statement is that the entries in a group statement
are all processed, even if one of the returns fail.

The contents of a group subsection can be any valid statement.

Examples:

group {
sql
ldap
file
if (updated) {

...
}

}

16.4 String Expansion
String expansion is a feature that allows strings to dynamically define their value at run time. This
expansion is done via the following syntax:

%{string}

This feature is used to create policies that refer to concepts rather than to specific values. For example, a
policy can be created that refers to the User-Name in a request, via:

%{User-Name}

This string expansion is done only for double-quoted strings and for the back-tick operator, as described
above. Unlike other languages, there is no way to define new variables. All of the string expansions must
refer to attributes that already exist or to modules that will return a string value.

16.4.1 Attribute References

Attributes in a list may be referenced via one of the following two syntaxes:

%{Attribute-Name}

Copyright (C) 2014 Network RADIUS SARL 120 of 158

THE FREERADIUS IMPLEMENTATION GUIDE CHAPTER 16 - UNLANG POLICY LANGUAGE
THE PROCESS

%{<list>:Attribute-Name}

The <list>: prefix is optional. If given, it must be one of request, reply, proxy-request,
proxy-reply, coa, disconnect, or control. If the <list>: prefix is omitted, then the request
list is assumed.

For EAP methods with tunneled authentication sessions (i.e. PEAP and EAP-TTLS), the inner tunnel session
can refer to a list for the outer session by prefixing the list name with outer.; for example,
outer.request.

When a reference is encountered, the given list is examined for an attribute of the given name. If found,
the variable reference in the string is replaced with the value of that attribute. Otherwise, the reference is
replaced with an empty string.

Examples:

%{User-Name}
%{request:User-Name} # same as above
%{reply:User-Name}
%{outer.request:User-Name} # from inside of a TTLS/PEAP tunnel

Examples of using references inside of a string:

"Hello %{User-Name}"
"You, %{User-Name} are not allowed to use %{NAS-IP-Address}"

16.4.2 Character Escaping

Some characters need to be escaped within a dynamically expanded string %{...}. The % character is used
for variable expansion, so a literal % character can be created by using %%.

Other than within a dynamically expanded string, very little character escaping is needed. The rules of the
enclosing string context determine whether or not a space or " character needs to be escaped.

Copyright (C) 2014 Network RADIUS SARL 121 of 158

THE FREERADIUS IMPLEMENTATION GUIDE CHAPTER 16 - UNLANG POLICY LANGUAGE
THE PROCESS

16.4.3 Pre-defined Expansions

In addition to storing attribute references, the server has a number of pre-defined references, as follows:

• %{conf:...}
Refers to a variable in the configuration file. See the section for documentation on configuration file
references.

• %{client:...}
Refers to a variable that was defined in the client section for the current client.

• %{listen:...}
Refers to a variable that was defined in the listen section that received the packet. This definition is
only available in version 2.1.11 and later.

• %{0}
Refers to the string that was last used to match a regular expression. The variables %{1} through
%{8} refer to the matched substring in the regular expression.

• %{md5:...}
Dynamically expands the string and performs an MD5 hash on it. The result is 32 hex digits.

• %{Packet-Type}
The packet type (Access-Request, etc.)

• %{Packet-SRC-IP-Address} %{Packet-SRC-IPv6-Address}
The source IPv4 or IPv6 address of the packet. See also the expansions %{client:ipaddr} and
%{client:ipv6addr}. The two expansions should be identical, unless %{client:ipaddr}
contains a DNS hostname.

• %{Packet-DST-IP-Address} %{Packet-DST-IPv6-Address}
The destination IPv4 or IPv6 address of the packet. See also the expansions %{listen:ipaddr}
and %{listen:ipv6addr}. If the socket is listening on a “wildcard” address, then these two
expansions will be different, as follows: the %{listen:ipaddr} will be the wildcard address and
%{Packet-DST-IP-Address} will be the unicast address to which the packet was sent.

• %{Packet-SRC-Port} %{Packet-DST-Port}
The source/destination ports associated with the packet.

• %{tolower:...}
Dynamically expands the string and returns the lowercase version of it. This definition is only
available in version 2.1.10 and later.

• %{toupper:...}
Dynamically expands the string and returns the uppercase version of it. This definition is only
available in version 2.1.10 and later.

Copyright (C) 2014 Network RADIUS SARL 122 of 158

THE FREERADIUS IMPLEMENTATION GUIDE CHAPTER 16 - UNLANG POLICY LANGUAGE
THE PROCESS

16.4.4 Single Letter Expansions

The following are single letter expansions. A number of additional single-letter expansions are not
documented here as they are duplicates of the form %{Attribute-Name}.

• %%
Returns %.

• %d
Two-digit day of the month when the request was received.

• %l
The Unix timestamp of when the request was received. This is an unsigned decimal number. It
should be used with time-based calculations.

• %m
Two-digit month describing when the request was received.

• %t
Timestamp in ctime format.

• %D
Request date (YYYYMMDD)

• %H
Two digit hour of the day describing when the request was received.

• %S
Request timestamp in SQL format, YYYY-mmm-ddd HH:MM:SS

• %T
Request timestamp in database format, YYYY-mmm-ddd HH.MM.SS.000000

• %Y
Four digit request year.

16.4.5 Module References

Individual modules may be referenced via the following syntax:

%{module:string}

These references are allowed only by a small number of modules that usually perform database lookups.
The module name is the actual name of the module, as described earlier. The string portion is specific to
each module and is not documented here. It is, however, usually dynamically expanded to allow for
additional flexibility.

Examples:

%{sql:SELECT name FROM mytable WHERE username = %{User-Name}}

16.4.6 Conditional Syntax

Conditional syntax similar to that used in Unix shells may also be used:

%{%{Foo}:-bar}

This code returns the value of %{Foo}, if it has a value. Otherwise, it returns a literal string bar.

%{%{Foo}:-%{Bar}}

Copyright (C) 2014 Network RADIUS SARL 123 of 158

THE FREERADIUS IMPLEMENTATION GUIDE CHAPTER 16 - UNLANG POLICY LANGUAGE
THE PROCESS

This code returns the value of %{Foo}, if it has a value. Otherwise, it returns the expansion of %{Bar}.

These conditional expansions can be nested to almost any depth, such as with %{%{One}:-
%{%{Two}:-%{Three}}}.

16.4.7 String Manipulation

There are a number of other operators that manipulate the expanded string prior to returning a value.

String Length

%{#string}

The string length operator returns the number of characters in the given string as a decimal number. It
can be used with attribute or module references. If the string has no value, then the length evaluates to
zero.

Printing as Integers

%{Attribute-Name#}

Placing the hash character after an attribute name causes the attribute to be printed as an integer. In
normal operation, integer attributes are printed using the name given by a VALUE statement in a
dictionary. Similarly, date attributes are printed as dates, i.e., “January 1 2010”.

This operator applies only to attributes of type date, integer, byte, and short. It has no effect on
other attribute types and cannot be used with module references. It is most commonly used to perform
calculations on dates, where the dates are treated as integers.

For example, if a request contains Service-Type = Login-User, the expansion of %{Service-
Type#} will yield 1, which is the value associated with the Login-User name. Using %{Event-
Timestamp#} will return the event timestamp as an unsigned 32-bit decimal number.

Indexed Offsets

%{Attribute-Name[index]}

References the indexed occurrence of the given attribute. The indexes start at zero. This feature is NOT
available for non-attribute dynamic translations, like %{sql:...}.

For example, %{User-Name[0]} is the same as %{User-Name}. The reference %{Cisco-
AVPair[2]} will reference the value of the third Cisco-AVPair attribute (if it exists) in the request
packet.

In practical usage, this kind of reference is of limited use. A plugin for a full language such as Perl or Python
is recommended if this functionality is required.

Number of Attributes

%{Attribute-Name[#]}

Returns the total number of attributes of that name in the relevant attribute list. The number will usually
be between 0 and 200.

Copyright (C) 2014 Network RADIUS SARL 124 of 158

THE FREERADIUS IMPLEMENTATION GUIDE CHAPTER 16 - UNLANG POLICY LANGUAGE
THE PROCESS

For most requests, %{User-Name[#]} will have a value of 1. As with the previous section, this reference
is of limited use.

All Named Attributes

%{Attribute-Name[*]}

Expands to a single string, with the value of each array member separated by a new line. This reference
should be used with care, as the result may have dozens of lines of text. As with the previous section, this
reference is of limited use.

Length of an Indexed Attribute

%{#Attribute-Name[index]}

Expands to the length of the string %{Attribute-Name[index]}. As with the previous section, this
reference is of limited use.

16.5 Programming Statements
Unlang provides the ability to conditionally evaluate statements based on attributes in a request, in a
response, or in data taken from a database.

16.5.1 The if Statement

if (condition) {
 [statements]
}

The primary conditional statement is the if statement. If condition evaluates to true, the statements
within the subsection are executed. If condition evaluates to false, those statements are skipped.

16.5.2 The else Clause

if (condition) {
[statements]

}
else {

[statements]
}

An if statement can have an else clause. If condition evaluates to false, the statements in the if
subsection are skipped and the statements within the else subsection are executed.

16.5.3 The elsif Clause

if (condition-1) {
[statements]

}
elsif (condition-2) {

[statements]
}

Copyright (C) 2014 Network RADIUS SARL 125 of 158

THE FREERADIUS IMPLEMENTATION GUIDE CHAPTER 16 - UNLANG POLICY LANGUAGE
THE PROCESS

else {
[statements]

}

A series of if statements can be used so that only one subsection is executed. In the preceding example,
if condition-1 evaluates to false, then the statements in the if subsection are skipped and
condition-2 is checked. If condition-2 evaluates true, then the statements in the elsif
subsection are executed. If condition-2 evaluates false, then the statements in the elsif subsection
are skipped, and the statements in the else subsection (if it exists) are executed.

An elsif clause does not need to be followed by an else clause. However, any else clause must be
the last clause in the chain. An arbitrary number of elsif clauses can be chained together to create a
series of conditional checks and statements.

16.5.4 The switch Statement

switch "string" {
case string-1 {

[statements]
}
case string-2 {

[statements]
}
case {

[statements]
}

}

A switch statement causes the server to evaluate string, which may be dynamically expanded. The
resulting fixed string is compared against string-1 and string-2 to find a match. If no string
matches, the server looks for the default case statement, which has no associated string.

If a matching case is found, the statements within that subsection are executed. If no matching case is
found, the switch statement does nothing.

Each string for the case statement must be constant. They are not expanded or evaluated at run time.
No statement other than case can appear in a switch section, and the case statement cannot appear
outside of a switch section.

16.6 Conditions/Conditional Expressions
Conditions are evaluated when parsing if and elsif statements. These conditions allow the server to
make complex decisions based on one of a number of possible criteria.

16.6.1 Intermediate Operators

This section defines the operators that are used to return results to a conditional expression.

The () Operator

(condition)

The () operator returns the result of evaluating the given condition. It is used to clarify policies or to
explicitly define conditional precedence.

Copyright (C) 2014 Network RADIUS SARL 126 of 158

THE FREERADIUS IMPLEMENTATION GUIDE CHAPTER 16 - UNLANG POLICY LANGUAGE
THE PROCESS

Examples:

(foo)
(bar || (baz && dub))

The attribute-name Operator

attribute-name

If an attribute-name appears inside of a condition, the contents of that attribute are returned. If no
such attribute exists, an empty value is returned.

Where the attribute-name is used in a condition as a test for existence, the condition evaluates to
true if the named attribute exists. Otherwise, the condition evaluates to false.

Examples:

User-Name
NAS-IP-Address

The return-code Operator

return-code

The Unlang interpreter tracks the return code of any module that has been called. This return code can be
checked in any condition. If the saved return code matches the code given here, the condition evaluates
to true. Otherwise, it evaluates to false.

The list of valid return codes is as follows:

Table 16.3.1 Module Return Codes

Examples:

if (notfound) {

Valid Return Codes

Name Meaning

notfound information was not found

noop the module did nothing

ok the module succeeded

updated the module updated the request

fail the module failed

reject the module rejected the request

userlock the user was locked out

invalid the configuration was invalid

handled the module has handled the request itself

Copyright (C) 2014 Network RADIUS SARL 127 of 158

THE FREERADIUS IMPLEMENTATION GUIDE CHAPTER 16 - UNLANG POLICY LANGUAGE
THE PROCESS

...
}

The data Operator

data

Any text not matching attribute-name or return-code is interpreted as given previously in 16.1
Data Types on page 111. Where the data is used in a condition as a test for existence, the condition
evaluates to true if the resulting string is not empty. Otherwise, it evaluates to false.

Examples:

foo
bar

16.6.2 Boolean Operators

This section defines the operators that return boolean values

The Existence Operator

(expression)

The existence operator returns the result of evaluating expression. Note that the language is not
strongly typed, so the text "0000" can be interpreted as a data type “integer”, having value zero, or a data
type “string”, having value "0000". This issue can be avoided by comparing strings to an empty string
rather than by evaluating the string by itself.

Examples:

if (foo) {...
if (User-name) { ...

The Negation Operator

(!expression)

This operator returns true if expression evaluates to false and returns false if expression
evaluates to true.

Examples:

if (!User-Name) { ...

The && Operator

(expression-1 && expression-2)

Copyright (C) 2014 Network RADIUS SARL 128 of 158

THE FREERADIUS IMPLEMENTATION GUIDE CHAPTER 16 - UNLANG POLICY LANGUAGE
THE PROCESS

The && operator performs a short-circuit “and” evaluation of the two expressions. This operator evaluates
expression-1 and returns false if expression-1 returns false. Only if expression-1
returns true is expression-2 evaluated and its result returned.

Examples:

if (User-Name && EAP-Message) { ...

The || Operator

(expression-1 || expression-2)

The || operator performs a short-circuit “or” evaluation of the two expressions. This operator evaluates
expression-1 and returns true if expression-1 returns true. Only if expression-1 returns
false is expression-2 evaluated and its result returned.

Examples:

if (User-Name || NAS-IP-Address) { ...

The == Operator

(data-1 == data-2)

The == operator compares the result of evaluating data-1 and data-2. As discussed in 16.1 Data
Types on page 111, the data-1 field may be interpreted as a reference to an attribute.

The data-2 field is interpreted in a type-specific manner. For example, if data-1 refers to an attribute
of type ipaddr, then data-2 is evaluated as an IP address. If data-1 refers to an attribute of type
integer, then data-2 is evaluated as an integer or as a named enumeration defined by a VALUE
statement in a dictionary. Similarly, if data-1 refers to an attribute of type date, data-2 will be
interpreted as a date string.

If the resulting data evaluates to be the same, then the operator returns true; otherwise, it returns
false.

Examples:

if (User-Name == "bob") { ...

Other Comparison Operators

(data-1 < data-1)
(data-1 <= data-1)
(data-1 > data-1)
(data-1 >= data-1)

The other comparison operators act in a fashion similar to the == operator except that the result of the
evaluation is the result of the given comparison. These operators are type-safe for integers, IP addresses,
dates, and strings.

Examples:

if (reply:Session-Timeout < 3600) { ...

Copyright (C) 2014 Network RADIUS SARL 129 of 158

THE FREERADIUS IMPLEMENTATION GUIDE CHAPTER 16 - UNLANG POLICY LANGUAGE
THE PROCESS

Regular Expression Operators

(data =~ /regex/)
(data !~ /regex/)

The regular expression operators perform regular expression matching on the data. The data field is
interpreted as given above for the == operator. The /regex/ field is interpreted as a regular expression.

The /regex/ field is valid only after a regular-expression operator and is implemented by the local
regular expression library on the system. These are usually Posix regular expressions.

A trailing i may be given, i.e., /regex/i. The trailing i indicates that the regular expression match
should be done in a case-insensitive fashion.

When operator =~ is used, then any parentheses in the regular expression will define variables that
contain the matching text.

The special variable %{0} contains a copy of the result of evaluating the data field. The variables %{1}
through %{8} will contain the substring matches, starting from the left-most parentheses. If there are
more than eight parentheses, the additional results will be discarded and will not be placed into any
variables.

Note that any $ character will have to be escaped or doubled, owing to limitations of the parser.

Examples:

if (User-Name =~ /@example\.com$$/) { ...

16.7 Attribute Editing Statements
One of reasons to use Unlang is the ability to edit attributes. This capability allows policies to add, delete,
or modify any attribute.

16.7.1 The update Statement

update <list> {
[attributes]

}

The update statement adds attributes to or edits the attributes in a named <list>. The <list>
should be one of request, reply, proxy-request, proxy-reply, coa, disconnect, or
control.

For EAP methods with tunneled authentication sessions (i.e. PEAP and EAP-TTLS), the inner tunnel session
can refer to a list for the outer session by prefixing the list name with outer. For example,
outer.request.

The update statement can only be used with the coa and disconnect lists when the server receives
an Access-Request or Accounting-Request. Updating the coa or disconnect list will cause the server
to send a CoA-Request of Disconnect-Request packet to the NAS.

When the server receives a CoA-Request or Disconnect-Request packet, the update sections should
reference the request and reply lists, as the server has received a request and will be sending a reply.

Copyright (C) 2014 Network RADIUS SARL 130 of 158

THE FREERADIUS IMPLEMENTATION GUIDE CHAPTER 16 - UNLANG POLICY LANGUAGE
THE PROCESS

16.7.2 Attribute Statement

Attribute-Name operator value

The attribute statement can be used only with an update section. It allows for the addition, deletion,
or editing of an attribute in the named list.

Each individual attribute and its associated value have to be placed in a single line in the policy. There is
no need for commas or semi-colons after the value.

Examples:

User-Name = "bob"
Reply-Message += "hello"

Attribute Names

The Attribute-Name, described above in the Operator section, must be a name defined in a
dictionary. If an undefined name is used, the server will return an error and will not start. The
Attribute-Name must be a simple word, as described above in section 16.1 Data Types on page 111.

The Unlang interpreter does not perform any string expansion on the name, so it is not possible to define
names that refer to other attributes.

Examples:

User-Name
Reply-Message

Operators

The operator is used to define how the attribute is handled. Different operators allow attributes to be
added, deleted, or replaced.

• = Add the attribute to the list, if and only if an attribute of the same name is not already present in
that list.

• := Add the attribute to the list. If any attribute of the same name is already present in that list, its
value is replaced with the value of the current attribute.

• += Add the attribute to the tail of the list, even if attributes of the same name are already present in
the list.

Examples:

User-Name = "bob"
NAS-IP-Address := 192.0.2.17
Reply-Message += "hello"

Copyright (C) 2014 Network RADIUS SARL 131 of 158

THE FREERADIUS IMPLEMENTATION GUIDE CHAPTER 16 - UNLANG POLICY LANGUAGE
THE PROCESS

Enforcement and Filtering Operators

The following operators may also be used in addition to the ones listed above. These operators use the
Attribute-Name and value fields to enforce limits on all attributes in the list and to edit attributes
with a matching Attribute-Name. All other attributes are ignored.

• -= Remove all attributes from the list that match the given value.

• == Keep only the attributes in the list that match the given value.

Note that this operator is very different from the = operator listed above. The = operator is
used to add new attributes to the list, while the == operator removes all attributes that do
not match the given value.

• < Keep only the attributes in the list that have values less than the value given herein. Any larger
value is replaced by the value given. If no such Attribute-Name exists, the attribute is added
with the value given here, as with the += operator.
This operator is valid only for attributes that can be represented as an integer.

• <= Keep only the attributes in the list that have values less than or equal to the value given here.
Any larger value is replaced by the value given here. If no such Attribute-Name exists, the
attribute is added with the value given here, as with the += operator.
This operator is valid only for attributes that can be represented as an integer.

• > Keep only the attributes in the list that have values greater than the value given here. Any smaller
value is replaced by the value given here. If no such Attribute-Name exists, the attribute is
added with the value given here, as with the += operator.
This operator is valid only for attributes that can be represented as an integer.

• >= Keep only the attributes in the list that have values greater than or equal to the value given here.
Any smaller value is replaced by the value given here. If no such Attribute-Name exists, the
attribute is added with the value given here, as with the += operator.
This operator is valid only for attributes that can be represented as an integer.

• !* Delete all occurrences of the named attribute, no matter what value they have.

Examples:

Session-Timeout <= 3600
Reply-Message != *

Values

The value field contains data as given above in 16.1 Data Types on page 111. The format of the value
is attribute-specific and is usually a string, integer, IP address, or other.

Prior to the attribute being instantiated, the value may be expanded as described above in section 16.1
Data Types on page 111. The expansion of the value allows for greater flexibility; for example, an IP
address value can be assigned to an attribute by specifying the IP address directly, by having the address
returned from a database query, or by having the address returned as the output of an executed program.

When string values are assigned to an attribute, they can have a maximum length of 253 characters.
Any extra data is silently discarded, causing the string to be truncated.

This truncating behavior is due to limitations of the RADIUS protocol, which can only transport strings of
253 characters or less; thus, attributes can only contain strings of that length. The Unlang parser has no

Copyright (C) 2014 Network RADIUS SARL 132 of 158

THE FREERADIUS IMPLEMENTATION GUIDE CHAPTER 16 - UNLANG POLICY LANGUAGE
THE PROCESS

such limit, however, so strings within the configuration files can have nearly arbitrary length. For example,
it is possible to write an SQL SELECT statement that is more than 1000 characters long. The result of the
SELECT statement will, however, be truncated to 253 characters.

Examples:

0
192.0.2.16
’foo bar’
"hello"
"%{sql: SELECT ... }"

16.8 Configurable Failover
Configurable failover provides the ability to control exactly how the processing flows through a section
and to override or rewrite the return value of any module. The Unlang interpreter provides for
complicated failover. The return codes from each module or subsection can be modified or updated
based on complex criteria.

This section describes how to create more complicated module processing and failover configurations,
and is thus intended only for advanced users.

16.8.1 Normal Processing

In normal operation, the interpreter processes lists of statements, such as the example given below:

authorize {
preprocess
files

}

In the above configuration, when the authorize section is executed, the preprocess module is also
called, followed by the files module. The processing is top to bottom and follows the algorithm given
earlier in this chapter.

The configurable failover function allows for more flexibility when the interpreter processes a section. As
stated previously, configurable failover provides the ability to control exactly how the processing flows
through a section and to override or rewrite the return value of any module. This capability allows
administrators to create policies such as “try sql1, if it’s down, try sql2, otherwise pretend everything
succeeded”:

accounting {
detail # always log to detail, stopping if it fails
redundant {

sql1 # try module sql1
sql2 # if that’s down, try module sql2
ok # otherwise treat it as success

}
}

In comparison to configurable failover, the Unlang interpreter is even more flexible.

Copyright (C) 2014 Network RADIUS SARL 133 of 158

THE FREERADIUS IMPLEMENTATION GUIDE CHAPTER 16 - UNLANG POLICY LANGUAGE
THE PROCESS

16.8.2 Rewriting Return Code

Normally, when a module fails, the intepretor stops processing the current section and returns. In some
cases, allowing an “early success” may be preferable, which means the server is instructed to stop
processing the list on a success. This instruction is accomplished by adding a subsection after the module
name. For example, rather than:

accounting {
detail
...

}

the configuration would read as follows:

accounting {
detail {

ok = return
}
...

}

In this example, the default action and the priority in the action table are replaced with the specified
action and/or priority. The above configuration would cause the interpreter to stop processing the
accounting section if the detail module returned ok.

On the other hand, if the goal is to have a “soft failure”, then the interpreter should continue processing
the accounting section even if the detail module returned fail. In that situation, the following
configuration should be used:

accounting {
detail {

fail = 1
}
...

}

The fail = 1 text tells the interpetor to remember the fail code with priority 1 in place of the default
action for fail, which is return. This configuration allows the accounting section to return ok if
another module succeeds and to return fail only if all of the other modules return fail.

16.8.3 Overriding the Action Table

Any module return code can be over-written as described above. The syntax is:

return-code = value

The return-code can be any one of the previously defined module return codes (e.g. ok, fail, etc.),
or the word default can be used to set values for all of the return codes that have not yet been
specified.

The value can be one of:

• decimal number The priority associated with this return code. The number may have any value
between 1 and 999999.

• return Stop processing the current list, and return the current code.

• reject Stop processing the current list, and return with a reject.

Copyright (C) 2014 Network RADIUS SARL 134 of 158

THE FREERADIUS IMPLEMENTATION GUIDE CHAPTER 16 - UNLANG POLICY LANGUAGE
THE PROCESS

Examples:

files {
notfound = 1
noop = 2
ok = 3
updated = 4
default = return # all other codes are set to "return"

}
files {

default = return # all codes are set to "return"
notfound = 1 # these settings over-ride the "return"
noop = 2
ok = 3
updated = 4

}

16.8.4 Setting Actions for a Subsection

The actions may also be over-ridden for a subsection:

authorize {
preprocess
redundant {

sql1
sql2
notfound = return

}
files

}

This configuration has a redundant block that over-rides the normal behavior. If both sql1 and sql2
gave the return code notfound, the redundant block would normally also return notfound. However,
by setting the handling of notfound to return, the parent authorize section will see the notfound
= return code from the redundant block and will stop processing the authorize section.

The above configuration therefore prevents the files module from being called if both of the sql
modules fail to find the user.

